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Abstract

This paper introduces a spectrally formulated finite element for the beams with active constrained layer damping
(ACLD). The spectral ACLD beam element is formulated from exact wave solutions of a set of fully coupled dynamic
equations of motion. The fully coupled dynamic equations of motion are derived by using Hamilton’s principle, and
they include the axial motion and rotary inertia of the viscoelastic layer. The dynamic responses obtained by the ex-
periment, spectral element method and the finite element method are compared to evaluate the validity and accuracy of
the present spectral ACLD beam element model. The control performances of an actively controlled ACLD beam
predicted by using the present spectral element model and the conventional finite element model are also compared. The
spectral ACLD beam element model is found to provide very reliable results when compared with the conventional
finite element model. © 2001 Published by Elsevier Science Ltd.
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1. Introduction

Viscoelastic materials (VEM) and piezoelectric materials (PZT) have been applied to the active control
of structural vibrations and noises. They are usually bonded on the surfaces of vibrating structures. Thus,
the resulting structures become the multi-layer laminate structures. There are numerous examples of beam-
typed multi-layer laminate structures. They are the elastic—elastic two-layer beam (Timoshenko, 1925; Hess,
1969), elastic-VEM two-layer beam (Oberst, 1952), elastic-VEM-elastic three-layer beam (i.e. passive
constrained layer damping (PCLD) (Kerwin, 1959; DiTaranto, 1965; Mead and Markus, 1969; Yan and
Dowell, 1972), elastic-PZT two-layer beams (Crawley and de Luis, 1987), and the elastic-VEM-PZT three-
layer beams (i.e. active constrained layer damping (ACLD)) (Plump and Hubbard, 1986; Baz, 1993;
Leibowitz and Vinson, 1993; Shen, 1994; McTavish and Hughes, 1993; Lam et al., 1995; Nath and Wereley,
1995).
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Because of its importance in understanding the fundamental physics and design applications of multi-
layered laminate beams, the development of various structural theories has received many attentions over
the years. Research efforts can be distinguished on the basis of several key features such as (1) the geometric
configuration and materials, (2) the assumptions underlying the governing equations, (3) the VEM damping
model, and (4) the response solutions method.

Timoshenko (1925) is probably the first to derive the elasticity solutions for two-layered infinite bi-metal
thermostats. Later Hess (1969) derived the elasticity solutions for two-layered finite elastic strip. After
Oberst (1952) introduced the concept of free layered viscoelastic damping treatment, Kerwin (1959) de-
veloped one of the first theories for simply supported three-layered PCLD beam using complex modulus.
Later DiTaranto (1965) derived the sixth-order differential equation of motion in terms of longitudinal
displacement. In 1969, Mead and Markus derived the sixth-order differential equation of motion in terms of
the transverse displacement for a three-layered PCLD beam. Yan and Dowell (1972) developed five gov-
erning equations by using the virtual work principle of elasticity theory. They derived a simplified fourth-
order differential equation of motion.

For PZT applications to active vibration controls, Crawley and de Luis (1987) proposed the uniform
strain model of static interaction between the base beam and the segmented PZT actuators. After Crawley’s
work, there have been many developments for the analytical and finite element models of PZT actuators/
sensors. Plump and Hubbard (1986) developed a sixth-order governing equation for the transverse motion
of a finite ACLD beam. They used a complex modulus approach to model the VEM layer. Baz (1993)
proposed a new ACLD with an additional piezoelectric sensor layer between the base structure and the
VEM layer, and he derived a sixth-order dynamic equation of motion based on the model of Mead and
Markus (1969). Leibowitz and Vinson (1993) also formulated a sixth-order dynamic equation of motion for
the three-layer ACLD beam by using an energy approach rather than the strength-of-materials approach
by Mead and Markus (1969) and Yan and Dowell (1972). An eighth-order matrix differential equation of
motion was developed by Shen (1994). He used the complex modulus approach to model the VEM layer.
Later, Lam et al. (1995) applied the GHM damping method to Shen’s model (1994). Nath and Wereley
(1995) modified the analytical approach by Mead and Markus (1969) to account for the induced strain in
the PZT layer and developed a sixth-order differential equation model for a fully treated beam. Liao (1997)
developed a mathematical model of a beam with a partial-coverage ACLD treatment, using GHM method
to model VEM behaviors. Recently, Wang and Wereley (1998) applied a progressive wave method to a
cantilevered ACLD beam. They derived a matrix equation in frequency domain by using the sixth-order
differential equation of motion developed by Mead and Markus (1969).

Despite numerous analytical models of multi-layer beams, some models are not appropriate for practical
use. This is in part due to the strict assumptions underlying the governing equations and in part due to the
complexity of mathematical representation. Thus, there also have been developed many finite element
models for ACLD beams (e.g. Lesieutre and Lee, 1996). The finite element method (FEM) can provide
more realistic dynamic behavior by removing some strict assumptions that are inevitable for deriving
analytical models. However, as a drawback of FEM, it is well known that a large number of finite elements
should be used to obtain reliable solutions, especially at high frequency. Furthermore, the modal analysis
approach commonly used in conjunction with FEM is usually limited to the low frequency regime where
the relative spacing of natural frequencies is large compared to the relative parameter uncertainty. Thus,
alternatives to FEM have been considered by many researchers.

In the literature, Doyle (1988) introduced the spectrally formulated finite element (simply, spectral el-
ement) to study the wave propagation in structures. In contrast to the conventional finite element, the
spectral element treats the mass distribution exactly by using exact shape functions and thus provides very
accurate dynamic characteristics of a structure. The spectral element matrix is the same as the exact dy-
namic stiffness matrix in nature (Leung, 1993; Banerjee, 1997). A structure can be discretized into many
spectral elements and then they can be assembled in a completely analogous way to that used for FEM. The
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FFT and inverse FFT algorithms are utilized in the solution process of spectral element analysis. This
solution approach is known as the spectral element method (SEM) and it is well known to provide exact
solutions even at high frequency as far as the structural model is valid. The SEM has been extended and
applied to many problems by Lee and his colleagues (1997-1999, 2000a).

Despite the outstanding features of SEM, there have been very few applications to the multi-layer
structures. This is probably due to the difficulty in obtaining the exact shape functions (which are required
to formulate the spectral element) for such complex structures. In the literature, Leung and Zhou (1996)
derived the dynamic stiffness matrix for the laminated composite plate based on the effective single layered
plate model. However, to the author’s knowledge, there have been very few spectral element applications to
ACLD structures. Lee and Kim (2000b) may be the first to develop the spectral element for the elastic-PZT
two-layer beams based on a set of axial-bending coupled equations of motion.

Hence, the purposes of this paper are: (1) to introduce a set of coupled equations of motion for ACLD
beams, (2) to formulate spectral ACLD beam element, (3) to evaluate the validity and accuracy of the
spectral ACLD beam element, and (4) to compare the control performances of an active ACLD beam
predicted by SEM and FEM.

2. Coupled dynamic equations of motion

The geometry and deformation of an ACLD beam of length L is shown in Fig. 1. A set of axial-bending-
shear coupled equations of motion for the ACLD beam are derived based on the following assumptions:

The shear deformations in both elastic and piezoelectric layers are negligible.
The rotary inertia is considered only for VEM layer.

Longitudinal motions are considered for all three layers.

The transverse displacement w(x, ¢) is same for all three layers.

There is perfect continuity, but no slip, at the interfaces.

Linear theories of elasticity and piezoelectricity are applicable.

The applied voltage is uniform along the beam.

The density and thickness are uniform over the beam.

The above assumptions have been widely used in the literature (e.g. Liao, 1997), except for the assumptions
(b) and (c) newly added for VEM layer in this paper.

» x

Fig. 1. The geometry and deformations of an ACLD beam.
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In Fig. 1, uy, u, and u, are the axial displacements of the neutral axis of the base beam, VEM layer, and
the PZT layer, respectively. For perfect bonding conditions, the geometry of Fig. 1. provides the following
kinematics relations:

uy = up, — (hy +hy)0/2 + hyy /2

1
up = up — (ho + 2hy + hy)0/2 + hyy M)
where hy,, h, and h, are the thickness of the base beam, VEM layer, and the PZT layer, respectively.
0 = Ow/0x is the rotational angle of the base beam and  is the shear angle of VEM layer. As used in Eq.
(1), the subscripts b, v and p will be used in the following derivations to represent the quantities for the base
beam, VEM layer, and the PZT layer, respectively.
The constitutive equation of the PZT under uni-axial loading can be written as

=1 s g
E —hy By D

where ¢ and ¢ are the mechanical stress and strain in the x-direction, respectively. D is the electrical dis-
placement (charge/area in the beam vertical direction) and E is the electrical field (voltage/length along the
vertical direction). Ch is the elastic stiffness, f53; is the dielectric constant, and /3 is the piezoelectric
constant.

For one-dimensional systems, the constitutive equation for VEM can be represented in the following
Stieltjes integral form (Christensen, 1982)

r(x,t)—Gogb_/t G(tfr)w& (3)

where 7 is the shear stress and G(¢) is the relaxation function of VEM (the stress response to a unit-step
strain input). This stress relaxation represents the energy loss from VEM, hence damping. In frequency
domain, Eq. (3) can be rewritten in terms of the complex modulus as follows:

Goy = G(io)¥ (4)

where G*(iw) is the complex modulus and ¥ is the spectral component defined in Eq. (18).

In most of previous works on ACLD beams, the electrical displacement through the thickness has been
assumed constant whereas the inplane electric fields have been neglected. However, very recently, Cheng
et al. (1999, 2000) theoretically investigated that the inplane electric fields cannot be negligible, for two-
dimensional plate structures, in the circumstance where the electrical displacements on the top and bottom
surfaces are unequal. They also numerically showed that the electrical displacement D through the
thickness of a semi-infinite three-layer PVDF laminate is almost uniform for the case of applied potential as
far as the thickness is very small. Thus, the electrical displacement D through the thickness may be assumed
constant as far as the piezoelectric layer is very thin. In this situation, the inplane electrical fields may
become very small to be negligible, especially when the applied voltage is uniform along the beam, which
has been assumed in this paper by following Liao (1997) and other researchers. Thus, the electrical dis-
placement D is assumed herein constant through the thickness of thin piezoelectric layer.

Using the constitutive relations of Egs. (2) and (3), the strain energy V, the kinetic energy 7, and the
virtual work 3 W (done by applied voltage and boundary forces) can be obtained as
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1 [t ,
V= 3 / {EbAbu{f + EoIow"” + EAu? + EJ,(W' — ') + A,(G o )y + Chdpus;
0

+ CIW™ = 2Aphs Dut, + Ay D* | dx
1 ‘ 2 2 2 .2 Sy N2 2 2
T =5 [ { ool + ) + oAy +37) + p (W = ) + ppdy (i + ) | de
0
L
8W:/ bV (1)3Ddx + Nouy |, + M0, + Odw|, + Roy|,
0

where E, I, A, b, and p (for each layer) are the Young’s modulus, area moment of inertia about the neutral
axis, cross-sectional area, width, and the mass density, respectively. N, O, M, and R represent the boundary
forces and moments corresponding to uy,, w, 0, and V), respectively, and V(7) is the voltage applied to the
PZT layer. The prime (') and the dot (-), in the preceding equations, indicate the partial derivatives with
respect to the coordinate x and time ¢, respectively.

Eliminate the axial displacements u, and u, from Eq. (5) by using Eq. (1), and apply the resulting en-
ergies into the Hamilton’s principle to yield a set of axial-bending-shear coupled equations of motion as
follows:

"

ELwW" 4 pAVv = _“ﬁ{) + pu" + i — Sllp + &y
EAuy — pAity = —oit/ + pw" + ey — eat)” 6)
EIWV/ . pllﬁ = —eV + oW + esity — eqr” + Ay(G o)

where

pA = pydy + p Ay + ppdy,  pl = ply + p AL [4+ pLAh,

o = pAvhi /2 + pyApha/2, B = EyAyh /2 + Epdyhs /2

7= Py + pAK /4 + p LAk /4

EA = Eydy + EyA, + Eydy, E, = Ch — 13, /B3

El, = EJI, + E,Ah. /4 + EyAphe,  El, = Eply + E I, + CD1, + E A hy /4

&1 = pyly + pAshhi /4 + p Aphihy /2, & = E, + EcAhhy [4 + EpAphyhy /2
&3 = pyAvhy /2 + p Aphy, &4 = EAhy /2 + EpAph,

hy = hy +hy, hy = hy, + 2k, + hy,

The boundary conditions are obtained as the accompanying outputs from the Hamilton’s principle, as

N=N+N" or u, = up, M=M-M or 0=0

8
R=R+R" or y =y, O=Qorw=w ®)

where N, M, Q and R are the resultant internal forces and moments defined in terms of displacement fields

as follows:
N = EAuy, — pw" + ea¥f/, 0 = —ELW" — iy, + fuy + W' — ey + ey ©)
M = ELW' — Buy — &y, R = ELY — exw" + equ,

_ InEq. (8), N, M, O and R are the resultant external forces and moments applied at boundaries, and W, 7,
0 and  are the displacements and slopes specified at the boundaries. N, M" and R® are the piezoelectric
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forces and moments piezoelectrically generated by the driving voltage V(¢) applied to PZT layer. They are
given by

N’ = bds  E,V (1), M = bdy E,hyV (1) )2, R’ = bdy Eyh,V (1) (10)

By simply removing all VEM related terms (i.e. &, &, & and &4), Eq. (6) can be readily reduced to the
governing equations of motion for the elastic-PZT two-layer beam (Lee and Kim, 1998).

3. Formulation of spectral ACLD beam element

The spectral ACLD beam element is formulated from the general solutions of Eq. (6). The general
solutions are assumed in the spectral representations as

N

w(xt) = 3 Wilx, )6
N .

up(x,1) = ZU,,(x, ,)e" "’ (11)
N .

W(x,t) = Z'P,, (x, w, )"

where W,, U, and ¥, are the spatially dependent Fourier coefficients (or spectral components) of the
flexural, axial, and shear deformations, respectively. For shorthand, the subscript n used in the preceding
equations will be omitted in the following.

Substituting Eq. (11) into Eq. (6) and canceling out the common time-dependent terms yields three
coupled ordinary differential equations for W, U, and ¥ as

E]WW//// _ COZpAW — wz(ocU/ _ “/W” —|—81'P,) —‘rﬁUW +82'PW
EAU" + 0 pAU = o (alW' — &) + " — &4 V" (12)
ELY' + o’ pl¥V = o (e W — &3U") + eoW" — e,U" + A,G"¥

The general solutions for W, U, and ¥ can be obtained in the forms

8

W(x, @) = ZAie"”C
i—1
8

Ulx,w) =Y Be™ (13)
i=1
8

V(x,w) = ZC,-e"""
=1

where k; (i=1,2,3,...,8) are the wave numbers and they are determined from the dispersion relation:
alk® + ark® + ask* + ak* +as =0 (14)

where
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a) = ELELEIl, — &2EI, + 2feseq — EAe} — EI,f°
a, = a)z(—plﬁ2 + 2Pere4 — ysﬁ + pIEAEI, — 2EI e3¢4 — 2EA¢ &,
+ 2Beres + 206264 — pAe; + ¢EAEL, — 2aPEl, + pAELEl) + iwA,G* (w) (EAEL, — §°)
a; = ot (pIEIuy - S%EA + 2fesey — 2plaf — 2ye1e4 + 208164 — s%EA
+ pApIEL, + 208565 — 2pAeie; — o Ely, + pAELy) (15)
+iw’4,G" (0) (yEA — 20 + pAEL,) + w” (pAe; — pAEAEL,)
ay = 0® (206165 — &3y — pAe] + o’ pl + ypApl) + o' (2pAeses — pApIEA — pI°El)
+i0’4,G* (0) (pdy — &*) — i’ pAEAA,G" ()
as = w®(pAe; — pA*pl) — i’ pA*4,G" (w)

In Eq. (15), the complex modulus G* can be expressed by either the analytical representation introduced
by Soovere and Drake (1985):

G
+ 1 : ) : A
+a(ifa/fr) 7 + (fz/N1)
or the GHM representation (McTavish and Hughes, 1993) :

R 2 23 Y
G =14 g (17)
= s2+ 22805 + &

G =G,

(16)

The parameters appeared Egs. (16) and (17) are determined to fit the experimentally measured frequency-
dependent damping data. The accuracy of the GHM model may depend on the number of dissipation
variables, R. The one-term GHM model considered in this paper for the illustrative examples has a single
internal dissipation coordinate, i.e. R = 1.

Since the dispersion defines the relationship between wave number and frequency, Eq. (14) yields eight
values of wave number k at a specified frequency w, but they always appear as + pairs. Thus, the general
solutions of Eq. (13) can be rewritten as

Wx,w) = _Z:(Aiek”C + Ay ™) = {®(x)} {4}
Ulr,0) = 30(Be" + Bae™) = {0(x)}" (B} (18)
Y(x,w) = Z(C,-ek’x + Cye ™) = {2(x)}{C}

1

where
{@(x)} = {ehr ehr ghr ehr ghr g ghr okl
{A}Yy={41 42 A3 Ay As As A7 As }T
(B}={B, B, By B, Bs Bs B, By}
{C}={C & G C C Co C G}'

T

(19)
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Substitute Eq. (18) into Eq. (12) to obtain the relations between coefficients 4;, B; and C;:
{B} = [diagonal(/;)]{4}
{C} = [diagonal(x)}{A}
where

A = (—l)i[(ﬁez — EIW£4)k,.6 + w*(Pey — oey — Ele3 — ys;;)kf
+ {(0&1 — ye3)* + pAesw’ Yy + pAesw*]/ 4,

t; = (—=1)'[(EAEL, — f*)k® + o (EAy + pAEIL, — 20p)k} (21)
—{(o? = ypA)* + pAEAw* k] — pA* ']/ 4;

A; = {(EAey — Bea)k! + 0*(EAe; + pAey — Pes — aea)k? + o (pde; — oe3) bk

By substituting Eq. (20) into Eq. (18), W(x) and ¥(x) can be expressed only in terms of A4;. The coef-
ficients A; are first determined by applying Eq. (18), all expressed in terms of A;, into appropriate boundary
conditions. Thereafter, the other coefficients B; and C; can be determined from Eq. (20). The functions /;(x)
and p,;(x) in Eq. (20) indicate the degree of coupling strength between axial, bending, and shear defor-
mations. Infinite or zero values of 7;(x) and y,;(x) simply imply the complete de-coupling.

By using Eq. (18), the spectral nodal displacements defined in Fig. 2 can be expressed in terms of 4; as

{r} = [P{4} (22)
where
Pr={U W 6 ¥, U W 6, ¥} (23)

and the matrix [P] is given in Appendix A. Similarly, substituting Eq. (18) into Eq. (19), the spectral nodal
forces and moments defined in Fig. 2 can be expressed in terms of A4; as

i} = [Q{4) (24)
where
}={N-N 0, M+M R-F N+N 0, M- R +F} (25)

and the matrix [Q] is given in Appendix A. In Eq. (25), N°, M" and R’ are now given by
N* = bdy EV (0),  M" = bdyEyhyV(0)/2, R = bdyEyh,V (o) (26)

The coefficients 4; in both Egs. (22) and (24) can be eliminated to obtain the spectral nodal force—
displacement relation as

= 1Q1P] " {»} = 1) (27)

where [s] is the frequency-dependent spectral element matrix for ACLD beam. Computer implementation to
obtain [s] can be accomplished either numerically or algebraically. Explicit expression for [s] has only
become possible due to recent advance in symbolic computing (Wolfram, 1996). Since the explicit ex-
pression is too lengthy, however it will not be listed herein.

The spectral ACLD beam elements can be assembled in a completely analogous way to that used for
FEM. After applying the boundary conditions to the result, the global system dynamic equation can be
reduced in the form as

[S{Y} ={F} (28)
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N;_ Ry Z N
lMl o R Ry

Fig. 2. Spectral element of ACLD beam.

where [S] is the global spectral matrix (or global dynamic stiffness matrix), {¥} the global degrees of
freedom vector, and {F} is the global forces vector, all in frequency domain.

4. Spectral element for active ACLD beam

In the preceding section, the spectral element is formulated for the passive ACLD beam that does not
include the active control law. Thus, it may be useful for the prediction of passive performance only. In
order to predict the control performance of active ACLD beams, previously formulated spectral element
should be modified to include the active control law. In this paper, we consider the active ACLD beam with
a simple active proportional-derivative (PD) control law.

Fig. 3 shows an active ACLD beam element with a PD controller. The driving voltage applied to PZT
layer is taken as the sum of two terms:

V(t) = —kyw — kgw (29)

In Eq. (29), the first term is proportional to the displacement w and the second term to the velocity w, all
measured at a specified location within an active ACLD beam element. k, and k4 are the proportional and
derivative gains, respectively. In frequency domain, Eq. (29) can be represented in the spectral form as

V(o) = koW — kg(ioW) (30)

By substituting Eq. (22) into Eq. (18), the flexural displacement W, measured at x = x, within an active
ACLD beam element, for instance, can be expressed in terms of the nodal displacements vector {y} as
follows:

Wy = W (xo, ) = {®(x0)} [P {»} (31)

Now, by substituting Eq. (31) into Eq. (30), the driving voltage can be rewritten in terms of the nodal
displacement vector {y} as

Driving Voltage V()

' o)

VEM kld
1 2 w(f *w

:fv“_

Base Beam

Fig. 3. An active ACLD beam element with a PD controller.
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V(w) = —(ky + ioks) {@(x0) } [P {¥} (32)
The spectral nodal forces and moments vector {f} defined in Eq. (24) can be split into two vectors.
{f ="+ {7} (33)
where

U™ ={Ni 0 M, R N, 0, M, R}’ (34)
r={-N o ¥ - N o - R}

The vector {f™} contains only the external forces and moments applied at the nodes of spectral element,
while the vector {fP} contains only the piezoelectrically generated forces and moments. By using Egs. (26)
and (32), the vector {f?} can be rewritten in the form

{f*y = —[s’{»} (35)
where
[s°] = (kp + ioka) {gH{ P (x0)} [P
g={-0 0 o —ho ¢ 0 —tp ho}' (36)
@ = bdy E,
Substituting Eq. (33) into Eq. (27) and representing {f?} in terms of {y} by use of Eq. (35) yields
{7} =Ils+s’{y} = [sconrroL[{»} (37)

where [sconTroL] 1S the spectral element matrix for the active ACLD beam, in which the active PD control
law is now taken into account.

5. Formulation of conventional finite element

To evaluate the accuracy of the spectral element, the conventional finite element analysis is also con-
ducted in this study. Two VEM damping models are introduced in the preceding section. The analytical
model by Soovere and Drake (1985) is not directly applicable to the time domain FEM analysis without
appropriate additional efforts. However, the GHM model can be readily used in conjunction with FEM.
Thus, following Liao’s work (1997), the GHM model with a single internal dissipation coordinate z (i.e.
one-term GHM model) is adopted herein for the conventional finite element formulation.

The displacement fields within a finite ACLD beam element are assumed in the form

{m(x) wix) 0 Y@} =[N N N@ N ) (38)
{z(x)} = [N(0) ] {32}

where the shape functions matrices are defined as
[NVJ={1-¢ 0 0 0 &£ 0 0 0O}
[NJ={0 1-38428 L(¢-28+&) 0 0 3¢-28 L(-&+&) 0}
[Ny]={0 0 0 1-¢ 0 0 0 ¢}
INJ={1-¢ &}

In Eq. (39), & is defined as x/L. The nodal DOFs vector {y,} and {y,} consist of eight mechanical DOFs and
two internal dissipation coordinates.

(39)
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Substituting the assumed displacement fields of Eq. (38) into the energy expressions of Eq. (5) and using
the energy method of finite element formulation, the dynamic equation of motion (for a finite element) can
be formulated in the form as

[M]{3} + [CK{y} + [K]{y} = {F} (40)

where the vectors {y} and {F} are defined by
T

=i} 4D

(F}y={N,-N" 0, M,+M" R -R N>.+N" 0, M,-M" R, +R; 0 0}

and the matrices [M], [C], and [K] are the (10 x 10) finite element matrices into which the conventional and
GHM terms are incorporated as follows:

el
=y o] @)
K=" ]+ K

where [Mj] and [K,] are the (8 x 8) conventional finite element mass and stiffness matrices without the
damping effects of viscoelastic layer, and [Mg], [Cg], and [Kg] are the (2 x 2) matrices augmented via the
two internal dissipation coordinates. Finally, [Kc] is the (10 x 10) matrix representing the coupling between
the mechanical DOFs and the internal dissipation coordinates. These matrices are all tabulated in Ap-
pendix B.

6. Illustrative examples

In order to evaluate the validity and accuracy of the spectral ACLD beam element formulated herein,
two types of cantilevered ACLD beams are considered as the illustrative examples. One is the patched
ACLD beam that has a VEM-PZT patch bonded on the base beam as shown in Fig. 4. This patched
ACLD beam is the same beam with which Liao (1997) conducted the vibration tests to measure the fre-
quency responses as well as the FEM analysis. The other one is the uniform ACLD beam that is fully
covered with VEM-PZT layer from the root to the free-end of base beam. They are made of the same
materials: PKI 502 for PZT layers and 3M ISD 112 for VEM layers. They also have the same geometry,
except for the length of VEM-PZT layers laminated over the same base beam. The length, width, and
height of the base beam are 261.6, 12.7, and 2.286 mm, respectively. For the patched ACLD beam, a VEM—
PZT patch of length 101.6 mm is bonded at 27 mm distance from the root of base beam. The geometry and
material properties are further detailed in Fig. 4.

The SEM analysis and the FEM analysis are conducted for both ACLD beams. Since the SEM is de-
veloped in the frequency domain, the measured frequency-dependent complex shear modulus can be di-
rectly used in conjunction with SEM without approximation. Accordingly, both the analytical model
represented by Eq. (13) and the GHM model can be also readily used in conjunction with SEM. However, it
is not easy to use the frequency-dependent complex shear modulus directly in conjunction with the con-
ventional FEM without appropriate additional efforts. This is why the GHM method was developed for the
use in conjunction with FEM. In this paper, the high accuracy of the spectral ACLD beam model will be
verified by comparing SEM results with FEM results. For the meaningful comparison between SEM and
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Fig. 4. Geometry and material properties of a patched ACLD beam.

FEM results, the same damping representation of viscoelastic layer should be used for both SEM and FEM
models. Thus, since only the GHM model can be used in conjunction with FEM, the one-term GHM model
represented by Eq. (16) is considered for both SEM and FEM models, just for the meaningful comparison
between SEM and FEM results. It has been well proved that only a single spectral element is enough for the
uniform structural member, regardless of its length, to obtain its accurate dynamic characteristics (Doyle,
1988; Leung, 1993). Thus, for SEM, total three spectral elements are used for the patched ACLD beam and
a single spectral element for the uniform ACLD beam. However, for the conventional finite element
analysis, the total number of conventional finite elements is increased until we obtain the results sufficiently
converged to certain values.

To verify the validity of the present spectral ACLD beam element formulation, first the frequency
response function (FRF) experimentally measured by Liao (1997) is compared in Fig. 5 with those
predicted by both SEM and FEM. The ACLD beam is excited by the piezoelectric actuator with white
noise input, and the FRFs in Fig. 5 are defined as the frequency responses of the displacement over input
voltage, at 2 mm from the free end. A couple of peaks appeared in the measured FRF at about 80 and
120 Hz seems to be related to electrical signals (Liao, 2000). The thin solid line represents the FRF

-30 T T r T
40 4
SEM (GHM)
and
-50 FEM (GHM) 4

-60

=70

-80

! SEM (Analytical)

Frequency Response Function (mm/V : dB)

-90

Experiment (Liao, 1997)
-100 + : .

0 20 40 60 80 100 120 140 160 180 200
Frequency (Hz)

Fig. 5. Comparison of the FRFs of a patched ACLD beam obtained by the analytical model-based SEM, the one-term GHM model-
based FEM, and the experiment (Liao, 1997).
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obtained by the one-term GHM model-based SEM. Since a sufficient number of finite elements are used
for the one-term GHM model-based FEM, the FRF by FEM is not well distinguishable from the FRF by
SEM, as illustrated in Fig. 5. The thick solid line represents the FRF obtained by the analytical model-
based SEM. As expected, Fig. 5 shows that the analytical model-based SEM provides the FRF that is in
better agreement with measured FRF when compared with one-term GHM model-based SEM. This
implies that a single internal dissipation coordinate is not enough for the GMH model to accurately
represent the damping characteristics of the VEM layer. Thus, it is required for the GHM model-based
SEM to take into account more internal dissipation coordinates to obtain the results further improved
toward the measured FRF. Since the SEM is developed in the frequency domain, anyhow, one does not
need to use any approximated model such as the GHM model in conjunction with SEM. From Fig. 5, one
may expect that the direct use of the frequency-dependent complex shear modulus, rather than the use of
analytical model or GHM model, in conjunction with SEM will provide the result further improved
toward the measurement.

To evaluate the accuracy of the present spectral ACLD beam element model, the natural frequencies,
FRFs, and the averaged errors of dynamic responses obtained by SEM are compared with those by FEM,
for both patched and uniform ACLD beams. The FRFs introduced in the following are now all defined as
the frequency responses of displacement over the mechanical force. The mechanical force (rectangular-type
impulse force) is applied at the free end of ACLD beam for 250 ps, and the frequency response of dis-
placement is measured at the same location.

Table 1 compares the natural frequencies of the patched ACLD beam, depending on the thickness of
VEM layer. When the same one-term GHM model is applied for both SEM and FEM, table shows that the
natural frequencies by FEM certainly converge to those by SEM as the total number of classical finite
elements used in FEM is increased, regardless of VEM layer thickness. This may prove the well-recognized
fact that SEM can provide exact solutions by using only minimum number of spectral elements (i.e. three
elements for the patched ACLD beam) or degrees of freedom. Thus, in the following discussions, the results
by SEM will be considered to be as the exact reference values to be compared with FEM results. The second
and third columns of table compare the natural frequencies obtained by SEM using different VEM dam-
ping models. Table 1 shows that the natural frequencies are dependent of the damping models used for
VEM layer. For the present example, the analytical model is found to provide a little bit lower values of

Table 1
The natural frequencies of a patched ACLD beam (n = total number of spectral elements or classical finite elements)
Modes (SEM (HZ) WFEM (HZ)
Analytical model One-term GHM model One-term GHM model
n=73 n=73 n=10 n=>50 n =150
When VEM layer thickness is 0.25 mm
Ist 27.882 27.879 27.923 27.898 27.897
2nd 148.539 149.791 150.677 150.067 150.045
3rd 429.694 440.596 442.779 441.098 441.039
4th 816.562 823.142 831.488 823.412 823.120
Sth 1391.679 1398.595 1423.242 1399.582 1398.743
When VEM layer thickness is 0.5 mm
Ist 27.676 27.672 27.706 27.680 27.679
2nd 146.905 147.816 148.672 147.975 147.949
3rd 422.669 431.870 434.612 432218 432.132
4th 804.272 809.850 819.938 810.197 809.835
Sth 1372.590 1379.170 1408.803 1380.371 1379.326
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natural frequencies when compared with the one-term GHM model. Table 1 finally shows that, in general,
the natural frequencies of the patched ACLD beam decrease as the thickness of VEM layer increases.

Figs. 6 and 7 compares the FRFs obtained FEM with the exact ones by SEM for the patched ACLD
beam and the uniform ACLD beam, respectively. They clearly show that the FRF by FEM gradually gets
closer to the FRF by SEM as the total number of finite elements used in FEM is increased.

The errors of the dynamic responses obtained by FEM are compared in Fig. 8 for the patched ACLD
beam and in Fig. 9 for the uniform ACLD beam, depending on the total number of finite elements. Since
the phase difference between the dynamic responses makes it difficult to directly use the difference of dy-
namic response amplitudes as the error indicator, two definitions of averaged error are used in Figs. 8 and
9. One is for the errors of the peak amplitudes of dynamic response within specified time duration, and the
other one is for the errors of the peak times at which the dynamic response has the peak amplitudes. In this
study, the averaged errors for the first 10 peak amplitudes (i.e. N = 10) are obtained from
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Fig. 6. Comparison of the FRFs of a patched ACLD beam obtained by SEM and FEM, all based on the one-term GHM model.
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Fig. 7. Comparison of the FRFs of a uniform ACLD beam obtained by SEM and FEM, all based on the one-term GHM model.
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Fig. 8. Time averaged error of the dynamic responses of a patched ACLD beam obtained by FEM with respect to those by SEM
(N = total number of classical finite elements used for FEM).
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Fig. 9. Time averaged error of the dynamic responses of a uniform ACLD beam obtained by FEM with respect to those by SEM
(N = total number of classical finite elements used for FEM).
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where wggy and wegy are the dynamic responses obtained by SEM and FEM, and T; indicate the peak
times. Figs. 8 and 9 clearly show that the errors of the dynamic responses by FEM (with respect to the exact
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Fig. 10. Viscoelastic damping model dependence of the FRFs of a patched ACLD beam obtained by SEM.

ones by SEM) decrease as the total number of finite elements used in FEM is increased. From Figs. 8 and 9,
it can be also confirmed that the patched ACLD beam requires more precise finite element discretization to
meet the specified solution accuracy.

Fig. 10 compares the FRF obtained by SEM using different VEM damping models for the patched
ACLD beam and Fig. 11 for the uniform ACLD beam. A single dissipation variable may not be enough for
the GHM model to accurately represent the VEM layer damping. Thus, for both ACLD beams, the FRFs
by one-term GHM model are found to be deviated significantly from those by the analytical model, es-
pecially at high frequency. In general, the analytical model is found to yield the FRFs of lower peaks with
lower natural frequencies when compared with the one-term GHM model. The uniform ACLD beam has

heavier VEM damping, thus the FRF of uniform ACLD beam is found to be much smaller than that of
patched ACLD beam.
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Fig. 11. Viscoelastic damping model dependence of the FRFs of a uniform ACLD beam obtained by SEM.
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Driving Voltage V(¢)

Fig. 12. An active uniform ACLD beam with a PD controller.

Lastly, the accuracy of SEM to predict the active control performance of active ACLD beams is
evaluated by considering a cantilevered uniform ACLD beam with a PD controller. The active ACLD
beam is shown in Fig. 12 and the control gains k, and k4 are given by 5 x 10" V and 60 Vs, respectively.
Tables 2 and 3 compare the modal parameters (i.e. modal frequency and modal damping) predicted by
both SEM and FEM. The active ACLD beam (i.e. controlled case) is found to have higher modal fre-
quencies and larger modal dampings than the passive ACLD beam (i.e. uncontrolled case), which is also
well illustrated in Fig. 13. Tables 2 and 3 show that the modal parameters predicted by FEM converge to
those by SEM as the number of finite elements used in FEM increases. This also confirms the high ac-
curacy of the present SEM. The FRFs and the dynamic responses for both passive and active ACLD

Table 2
Modal frequencies of the passive and active uniform ACLD beams (n = total number of spectral elements or classical finite elements)*
MOde uncontrolled (HZ) eontrolled (HZ)
SEM SEM FEM
n=1 n=1 n=>5 n=10 n=20 n=>50
Ist 28.3 32.0 32.1 32.0 32.0 32.0
2nd 161.2 172.9 177.2 174.0 173.2 173.0
3rd 423.5 430.8 457.3 436.9 432.3 431.0
4th 780.2 785.3 898.5 808.4 790.9 786.2
Sth 1240.8 1244.6 1713.1 1310.5 1260.4 1247.1

#Used one-term GHM model for VEM.

Table 3
Modal damping of the passive and active uniform ACLD beams (n = total number of spectral elements or classical finite elements)*
Mode éuncomrolled (HZ) 6comr0]]ed (HZ)
SEM SEM FEM
n=1 n=1 n= n=10 n=20 n =150
Ist 0.0589 0.1113 0.1119 0.1114 0.1113 0.1113
2nd 0.0830 0.0980 0.0934 0.0969 0.0978 0.0980
3rd 0.0403 0.0439 0.0365 0.0421 0.0435 0.0439
4th 0.0192 0.0203 0.0127 0.0182 0.0198 0.0202
5th 0.0095 0.0099 0.0041 0.0081 0.0094 0.0098

#Used one-term GHM model for VEM.
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Fig. 13. Comparison of the active performances of an active uniform ACLD beam with a PD controller.
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Fig. 14. Comparison of the FRFs of an active uniform ACLD beam with a PD controller.

beams are compared in Figs. 14 and 15, respectively. With the PD controller, the peaks of FRF are a little
bit shifted to higher frequencies while the peak amplitudes are lowered. Accordingly, the dynamic re-
sponse of active ACLD beam decays faster than the passive ACLD beam. Figs. 14 and 15 show that the
FEM results (dotted lines) by using 20 finite elements are so close to the SEM results (dashed lines) that
they are not almost distinguishable from each other. This also verifies that the high accuracy of SEM may

be achieved by FEM only when the sufficient number of finite elements (i.e. 20 finite elements herein) is
used.
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Fig. 15. Comparison of the dynamic responses of an active uniform ACLD beam with a PD controller.

7. Conclusions

In the present paper, a set of fully coupled equations of motion is derived for ACLD beams by using
Hamilton’s principle. The axial motion and the rotary inertia of viscoelastic layer are taken into account
in the equations of motion. The SEM of ACLD beam is then formulated from the exact wave solutions
of governing equations. The SEM is also developed for the ACLD beam with active control law. The
frequency responses predicted by using the analytical and GHM models are compared with experimen-
tally measured one (Liao, 1997) to observe that the use of the frequency-dependent complex shear
modulus in conjunction with SEM may provide the result further improved toward the measurement. The
conventional finite element model of ACLD beam is used to evaluate the accuracy of the present spectral
ACLD beam model. Two types of ACLD beam are considered as the illustrative examples: the patched
ACLD beam and the uniform ACLD beam. The minimum number of spectral elements is used for the
SEM models: i.e., three for the patched ACLD beam and just one for the uniform ACLD beam. On the
other hand, the total number of conventional finite elements used in FEM analysis is varied to observe
that the FEM results indeed converge to the SEM results as the total number of conventional finite
elements is increased. It is found that the SEM provides in general very accurate dynamic characteristics
for both passive and active ACLD beams when compared with the conventional FEM, especially at high
frequency.
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Appendix A

The matrices [P] and [@Q] in Egs. (22) and (24) are defined as follows:
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Appendix B

The matrices [My], [Ko] [Mc], [Ks], [Cs] and [Kc] in Eq. (42) are defined as follows:
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